Главная Немного
истории
Требования к
криптоалгоритмам
Симметричные
криптосистемы
Криптосистемы
с открытым ключом
Примеры
криптоалгоритмов

Требования к криптографическим системам

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании. Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

Криптоанализ

Попытка криптоанализа называется вскрытием. Основное предположение криптоанализа, впервые сформулированное в девятнадцатом веке Датчманом А. Кирхгофом (Dutchman A. Kerckhoffs), и состоит в том, что безопасность полностью определяется ключом. Кирхгоф предполагает, что у криптоаналитика есть полное описание алгоритма и его реализации. Хотя в реальном мире криптоаналитики не всегда обладают подробной информацией, такое предположение является хорошей рабочей гипотезой. Если противник не сможет взломать алгоритм, даже зная, как он работает, то тем более враг не сможет вскрыть алгоритм без этого знания. Ниже перечислены основные типы криптоаналитического вскрытия. Для каждого из них, конечно, предполагается, что криптоаналитик обладает всей полнотой знания об используемом алгоритме шифрования: Вскрытия с известным открытым текстом и с использованием выбранного открытого текста встречаются чаще, чем можно подумать. Не является невозможным для криптоаналитика добыть открытый текст шифрованного сообщения или подкупить кого-нибудь, кто зашифрует выбранное сообщение. Многие сообщения имеют стандартные начало и окончание, что может быть известно криптоаналитику. Особенно уязвим шифрованный исходный код из-за частого использования ключевых слов: #define, struct, else, return. Те же проблемы и у шифрованного исполнимого кода: функции, циклические структуры и так далее. Вскрытия с известным открытым текстом (и вскрытия с выбранным шифротекстом) успешно использовались в борьбе с немцами и японцами в ходе Второй мировой войны.

Остерегайтесь людей, расхваливающих надежность своих алгоритмов, но отказывающихся их опубликовать. Доверять таким алгоритмам нельзя. Хорошие криптографы опираются на мнение других, отделяя хорошие алгоритмы от плохих.

Безопасность алгоритмов

Различные алгоритмы предоставляют различные степени безопасности в зависимости от того, насколько трудно взломать алгоритм. Если стоимость взлома алгоритма выше, чем стоимость зашифрованных данных, вы, скорее всего, в безопасности. Если время взлома алгоритма больше, чем время, в течение которого зашифрованные данные должны сохраняться в секрете, то вы также, скорее всего, в безопасности. Если объем данных, зашифрованных одним ключом, меньше, чем объем данных, необходимый для взлома алгоритма, и тогда вы, скорее всего, в безопасности. Ларе Кнудсен (Lars Knudsen) разбил вскрытия алгоритмов по следующим категориям, приведенным в порядке убывания значимости:

Алгоритм является безусловно безопасным, если, независимо от объема шифротекстов у криптоаналитика, информации для получения открытого текста недостаточно. По сути, только шифрование одноразовыми блокнотами невозможно вскрыть при бесконечных ресурсах. Все остальные криптосистемы подвержены вскрытию с использованием только шифротекста простым перебором возможных ключей и проверкой осмысленности полученного открытого текста. Это называется вскрытием грубой силой. Криптография больше интересуется криптосистемами, которые тяжело взломать вычислительным способом. Алгоритм считается вычислительно безопасным (или, как иногда называют, сильным), если он не может быть взломан с использованием доступных ресурсов сейчас или в будущем. Термин "доступные ресурсы" является достаточно расплывчатым. Сложность вскрытия можно измерить различными способами: В качестве эмпирического метода сложность вскрытия определяется по максимальному из этих трех коэффициентов. Ряд операций вскрытия предполагают взаимосвязь коэффициентов: более быстрое вскрытие возможно за счет увеличения требований к памяти. Сложность выражается порядком величины. Если сложность обработки для данного алгоритма составляет 2128, то 2128 операций требуется для вскрытия алгоритма. (Эти операции могут быть сложными и длительными.) Так, если предполагается, что ваши вычислительные мощности способны выполнять миллион операций в секунду, и вы используете для решения задачи миллион параллельных процессоров, получение ключа займет у вас свыше 1019 лет, что в миллиард раз превышает время существования вселенной. В то время как сложность вскрытия остается постоянной (пока какой-нибудь Криптоаналитик не придумает лучшего способа вскрытия), мощь компьютеров растет. За последние полвека вычислительные мощности феноменально выросли, и нет никаких причин подозревать, что эта тенденция не будет продолжена. Многие криптографические взломы пригодны для параллельных компьютеров: задача разбивается на миллиарды маленьких кусочков, решение которых не требует межпроцессорного взаимодействия. Объявление алгоритма безопасным просто потому, что его нелегко взломать, используя современную технику, в лучшем случае ненадежно. Хорошие криптосистемы проектируются устойчивыми к взлому с учетом развития вычислительных средств на много лет вперед.

HotLog